Compact Modeling of STT-MTJ for SPICE Simulation

Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao School of ECEE, ASU

Trend of Technology Scaling

Tremendous variety in memory physics, materials, structures, and devices!

Tremendous Diversity

Performance

 STT-RAM Advantages:

- Access time comparable to SRAM
- Density comparable to DRAM
- Low standby power
- High endurance (>10¹⁶)
- Good scalability

STT-MTJ Fundamentals

- Direction of the magnetization angle in the free layer controls the resistance of magnetic-tunnel-junction (MTJ)
- Parallel state (P) corresponds to bit '0' being stored and antiparallel state (AP) corresponds to bit '1'.

Hierarchical Memory Device Model

 Multi-level modeling for design analysis, optimization and path-finding / inverse path-finding

Approach 1: Numerical Method

- Numerically solve 3D LLG differential equation
- Pros: Capture both static and transient behavior, and the dependence on geometry, etc.
- Cons: Incompatible with IC design infrastructure, and low computation efficiency

[J. B. Kammerer, TED 2010]

Approach 2: Macro Modeling

- Compact models of cell performance metrics
- Pros: Capture the relationship between programming input and the performance
- Cons: Lacking sufficient details and flexibility for optimization and exploration with CMOS

[J. D. Harms, TED 2010]

Compact Model of STT-MTJ

- Fundamental physics in STT-MTJ
 - 3D LLG equation
 - Simplified 1D LLG equation
 - Critical points in switching
- Structural / Circuit model
- Device model
- Validation

- Zeeman energy: aligns the magnetization field with the applied field
- Anisotropic: self-alignment of magnetization along easy axis \vec{u}_{ea}
- Damping: energy loss of the precession of magnetization
- Spin-transfer torque: the interaction with the spin of electrons
- Constants:
 - $\gamma \approx 1.76 \times 10^{11} \ rad \cdot s^{-1} \cdot T^{-1}$ gyromagnetic ratio
 - $\mu_0 = 4\pi \times 10^{-7} N \cdot A^{-2}$ permeability constant
 - K is anisotropy constant dependent on material
 - $\alpha \approx 0.02$ damping constant

1D LLG Equation

Decompose 3D LLG into two perpendicular directions

z

D

φ

Z+A

STT

Rotation:
$$M_s \frac{d\varphi}{dt} = -\gamma \mu_0 M_s H \sin \theta - 2\gamma K \sin \theta \cos \theta$$

Switching:
$$M_s \frac{d\theta}{dt} = \alpha M_s \frac{d\varphi}{dt} + \eta \frac{\mu_B I}{eV}$$

Simplified 1D Equation:

$$M_{s}\frac{d\theta}{dt} = -\alpha\gamma(\mu_{0}M_{s}H\sin\theta + 2K\sin\theta\cos\theta) + \eta\frac{\mu_{B}I}{eV}$$

 Assumption: The damping of θ switching is negligible since α is small enough.

Critical Points in Switching

$$M_{s}\frac{d\theta}{dt} = -\alpha\gamma(\mu_{0}M_{s}H\sin\theta + 2K\sin\theta\cos\theta) + \eta\frac{\mu_{B}I}{eV}$$

- 11 -

Structural / Circuit

$$M_{s}\frac{d\theta}{dt} = -\alpha\gamma(\mu_{0}M_{s}H\sin\theta + 2K\sin\theta\cos\theta) + \eta\frac{\mu_{B}I}{eV}$$

- $\theta \rightarrow V$
- A straightforward way: Numerical
 - Use current sources and capacitor in SPICE to solve the differential equation
 - Accurate
 - Iteration involved

A more compact approach

$$M_{s}\frac{d\theta}{dt} = -\alpha\gamma(\mu_{0}M_{s}H\sin\theta + 2K\sin\theta\cos\theta) + \eta\frac{\mu_{B}I}{eV}$$

- Region based RC circuit
 - θ approximation near 0°, 90°, 180°
 - Pre-solve differential equation
 - All elements do not depend on θ
 - No iteration
 - Faster in large scale simulation

Time

Comparison

- Numerical: accurate, iterative
- Compact: fast, easy for designers

Device

Magnetic Angle to Resistance

$$R(\theta) = 2R_{P} \left(\frac{1 + TMR}{2 + TMR \cdot \cos\theta} \right)$$

$$TMR = \frac{R_{AP} - R_P}{R_P}$$

Saturation Magnetization (M_s)

$$\frac{M_s(D)}{M_{s0}} = 4\left[1 - \frac{1}{\frac{2D}{ch} - 1}\right] \cdot exp\left[-\frac{2S_b}{3R}\frac{1}{\frac{2D}{ch} - 1}\right] - 3$$

[H. M. Lu, J. Phys. D 2007]

Model Validation

Programming current

[K. C. Chun, JSSC 2013]

[Z. Diao, J. Phys. 2007, C. J. Lin, IEDM 2009]

Hysteresis characteristics

Results

- Geometry dependence
 - r impacts switching current density through M_s
- Write energy and latency
 - Optimal I achieves minimum programming energy

Summary and Future Work

- Compact model of STT-MTJ in a hierarchical framework
 - Simplified LLG equation
 - Region based RC circuit model
 - Geometry dependence of model parameters

