Compact Modeling of STT-MTJ
for SPICE Simulation

Zihan Xu, Ketul Sutaria, Chengen Yang,
Chaitali Chakrabarti, Yu (Kevin) Cao
School of ECEE, ASU




Trend of Technology Scaling
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= Tremendous variety in memory physics, materials,
structures, and devices!




Tremendous Diversity

= Performance = STT-RAM
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STT-MTJ Fundamentals
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= Direction of the magnetization angle in the free layer
controls the resistance of magnetic-tunnel-junction (MTJ)

= Parallel state (P) corresponds to bit ‘0’ being stored and anti-
parallel state (AP) corresponds to bit ‘1°.




Hierarchical Memory Device Model

= Multi-level modeling for design analysis, optimization and
path-finding / inverse path-finding
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Approach 1: Numerical Method

= Numerically solve 3D LLG differential equation

= Pros: Capture both static
and transient behavior, H10° ;
and the dependence on
geometry, efc.
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= Cons: Incompatible with

|C design infrastructure, Time (bs)
and low computation
efficiency

[J. B. Kammerer, TED 2010]




Approach 2: Macro Modeling

= Compact models of cell performance metrics

Write Pulse vs. Switching Time
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Compact Model of STT-MTJ

" Fundamental physics in STT-MTJ
— 3D LLG equation
— Simplified 1D LLG equation
— Critical points in switching

= Structural / Circuit model

= Device model

= \alidation




3D LLG Equation

Zeeman Anisotropic Damping Spin-transfer
torque

% Zeeman energy: aligns the magnetization field with the applied field

Anisotropic: self-alignment of magnetization along easy axis U,
Damping: energy loss of the precession of magnetization
Spin-transfer torque: the interaction with the spin of electrons
Constants:

~ ¥y~ 176 x 10! rad - s~1 - T~ gyromagnetic ratio
— Up =4m X 1077 N - A~% permeability constant
— Kis anisotropy constant dependent on material

— o =0.02 damping constant




1D LLG Equation

Decompose 3D LLG into two perpendicular directions
Rotation: MS%:—yyOMSHsinH—ZMSinecosﬁ ‘

Switching: Msd_gzaM d_¢+,7ﬂs|

> dt eV

= Simplified 1D Equation:

I\/Is(jj—f:—ay(yoMsH sin @+ 2K sin 8cos 6)+n ”f/'
e

Assumption: The damping of 0 switching is negligible
since a is small enough.




Critical Points in Switching

déo

M, — = —ay(u,M H sin @+ 2K sin cos )+ 17

S dt
= | > I, active switching
— ¢, Is associated
= At the end of | pulse,

6> 6. to complete the
switching

do/dt (normalized)

— Minimum current 7, is
defined, given 7

M .6, =77—’UBIC T+
eV

_[—ay(yoMsH sin @ + 2K sin & cos 6 )t
0

-1.0

O

|
|
|
|
|
|
|
|
|
0 g

C

0 (degree)

180

-11 -



Structural / Circuit

do : : I
M, —— = —ay(u,M H sin @ + 2K sin @ cos )+ L2
dt eV
= 0>V
= A straightforward way: Numerical
— Use current sources and U |
capacitor in SPICE to solve 7 eV
the differential equation @
— Accurate
o ()
— lIteration involved N,

-12 -

oy (14,M H sin 6+ 2K sinfcosh) _




A more compact approach

Mscil—f = —ay(u,M Hsin@+2Ksindcosd)+n ﬂf/l
e

= Region based RC circuit

— 0 approximation near 0°, 90°, 180°
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— Pre-solve differential equation

— All elements do not depend
on O

C

— No iteration

— Faster in large scale simulation

Magnetic Angle 6 (degree)
(o]
o

o

Time

-13 -



Comparison

= Numerical: accurate, iterative

= Compact: fast, easy for designers
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Device

= Magnetic Angle to Resistance

R(O)= 2R, 1+TMR )
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[H. M. Lu, J. Phys. D 2007]
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Model Validation

= Programming current
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[K. C. Chun, JSSC 2013]

= Hysteresis characteristics

Resistance (normalized)
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[Z. Diao, J. Phys. 2007, C. J. Lin, IEDM 2009]
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Results

= Geometry dependence = Write energy and latency
— rimpacts switching current — Optimal | achieves minimum
density through M, programming energy
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Summary and Future Work

= Compact model of STT-MTJ in a hierarchical framework
— Simplified LLG equation
— Region based RC circuit model

— Geometry dependence of model parameters
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