

Low Frequency Noise in Strained Silicon Nanowire Array MOSFETs and Tunnel-FETs

S. Richter, S. Vitusevich, S. Pud, J. Li, L. Knoll, S. Trellenkamp, A. Schäfer, S. Lenk, K. K. Bourdelle¹, Q. T. Zhao, A. Offenhäusser, S. Mantl

Peter Grünberg Institut (PGI), Forschungszentrum Jülich, Germany ¹ SOITEC, Parc Technologique des Fontaines, France

Outline

- Introduction
 - Comparison of TFET and MOSFET
- Device Fabrication
- DC Characterization
 - MOSFET
 - TFET
- Low Frequency Noise
 - Measurement Setup
 - MOSFET
 - TFET
- Conclusion

Research Motivation for Tunnel FET

Tunnel field-effect transistor (TFET)

Carrier Transport

Study low frequency noise in MOSFET and TFET devices

TFET Fabrication

$$I_{ds} \sim T_{\text{WKB}} \approx \exp\left(-\frac{4\lambda\sqrt{2m^*}E_g^{3/2}}{3q\hbar(\Delta\Phi + E_g)}\right) \qquad \begin{array}{l} \lambda: \text{ Screening length of electrical potential} \\ E_g: \text{ Bandgap} \\ m^*: \text{ Effective mass} \end{array}$$

Decrease *E_g* and *m** by...
> tensile strained SOI substrate

- Decrease λ by...
 - nanowire array
 - tri-gate
 - high-k dielectric

SEM: NW Array

TEM: uniaxial strained NW

Process Flow Nanowire Array p-TFET

1. Patterning of the nanowire array

- Solition Sales
- 2. Deposition and patterning of the gate

3. Source/drain implantation

DC Transfer Characteristics

- Close to ideal subthreshold slope
- $S \sim k_B T/q$, constant with V_G
- > Good electrostatic gate control

- $S \sim \Delta \Phi \sim V_G$
- S > 60 mV/dec

$$\succ \quad \lambda = \lambda_{channel} + \lambda_{junction}$$

DC Output Characteristics

- Channel and access resistance are major resistances
- Linear onset
- Linear increase with V_G

- Tunnel junction is major resistance
- S-shaped onset
- Exponential increase with V_G

Setup – Low Frequency Noise

- Battery as source for V_G and V_{DS}
- R_{load} and R_S connected in parallel (AC signal)

$$\frac{R_{load}}{R_s} < \frac{1}{10}$$

- Voltage noise power spectral density measured
- Noise contribution of amplifiers calibrated and subtracted

Current noise spectral density:

$$\frac{S_I(f)}{I^2} = \frac{S_V(f)}{V^2}$$

$$S_I(f) = S_V(f) \cdot \frac{I^2}{V^2} = \frac{S_V(f)}{R_{total}^2}$$

$$R_{total} = \left(\frac{1}{R_s} + \frac{1}{R_{load}}\right)^{-1}$$

- S_1 calculated from S_V in the linear regime
- 1/f noise due to mobility fluctuations in the channel
- Depends on number of carriers in channel

Hooge empirical relation [1]: $\frac{S_I(f)}{I^2} = \frac{1}{f} \frac{\alpha_H}{N}$

Hooge parameter:

$$\alpha_H = \frac{S_I f L^2}{q \mu I_D V_D}$$

$$\alpha_H = 7.3 \times 10^{-3}$$

- Typical $\alpha_{\rm H}$ for high-k devices 10⁻³ to 2x10⁻² [2], [3]
- Good noise characteristics of the MOSFET reference devices

Hooge et al., *Rep. Prog. Phys.* **44** p.479 (1981)
Giusi et al., IEEE EDL **27** p.508 (2006)
Simoen et al., APL **85 p.**1057 (2004)

Low Frequency Noise – TFET

- S_I/I_D^2 constant with V_G for -1.6 V to -1.8 V
- Shape of spectrum changes abruptly
- Random Telegraph Signal (RTS) in time trace from $|V_G| > 1.9 V$

ICH

$$\tau_{down} = 5.12 \,\mathrm{ms} \, | \, \tau_{up} = 2.88 \,\mathrm{ms}$$

 $f_c = \tau_{up}^{-1} + \tau_{down}^{-1} = 542 \,\mathrm{Hz}$

Two level RTS noise [1]: $S_I(f) = 4\Delta I^2 \frac{(\tau_{up}\tau_{down})^2}{(\tau_{up} + \tau_{down})^3} \frac{1}{1 + 4\pi f^2/f_c^2}$

[1] Yuzhelevski et al., Rev. Sci. Instrum. 71 1681, 2000

LFN – MOSFET vs TFET

- Noise level in TFET higher than MOSFET
- No dependence on number of carriers in channel in TFET

Tunnel junction is the main source of noise in the TFET

Origin of RTS Noise in TFET

- RTS noise in MOSFETs observed for small gate area / short channels
- Confined tunnel junction area independent of gate length
- Exponential dependence of BTBT on gate potential

Outlook – Next Generation TFET

- Tunnel junction formation by dopant segregation
- Reduced trap assisted tunneling
- Improved on-current
- S < 60 mV/dec

Conclusion

NW array MOSFET:

- Close to ideal inverse subthreshold slope
- Good noise performance

✓ NW array TFET:

- Exceeds MOSFET noise level
- Noise generated in tunnel junction
- Confined tunnel junction more likely to generate RTS noise

