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Motivation: System On Chip
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Flicker (1/f) Noise

* Flicker noise: the fluctuation of drain current due to
Oxide Traps:
1. Reduction in channel carrier density
2. Change in mobility due to Coulomb Scattering
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Unified Flicker Noise Model

* The unified drain-current FN power density as a
function of frequency f

L
kB TIC% f Nt* (Efn)

YfWL? J N (x)?2

Sip(f) =

where N{ is the so-called apparent trap density given
by N;(Egy) (1 + auN)?

N; is approximated by the following function of N:
N/(E¢) = A+ BN + CN?
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Halo (Pocket) Implant

e non-uniform doping concentratlon
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Approaches Suggested in Literature

Assuming only non-uniform doping concentration:
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The equation and the graph have been taken directly from [11]:
Pocket implantation effect on drain current flicker noise in analog nMOSFET devices, Wu et al.,
TED, vol. 51, no. 8, 2004



Measurement

e Measurements were done on short and long-channel NMOSs
fabricated by CMOS 45-nm node technology

e A S300 semi-auto prober with BTA9812 noise analyzer were used
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Width:
Long-channel: 10 pm
Short-channel: 5 pum
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Observations:

1) Comparable Noise in
Short and long channels

2) Significant bias
dependence
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Observations:

1) Comparable Noise in
Short and long channels

2) Significant bias
dependence

3) Usual practice of the
unified flicker-noise
model is inadequate

g

More complex
mechanisms are
Involved.
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Methodology
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Methodology con.

 Weighted contributions based on the equivalent
transimpedances

——————————————————————————————

HSPICE, BSIM6
small signal analysis
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BSIM®6: Industry Standard bulk model

BSIM6 — Industry standard bulk MOSFET model
— All real device effects (SCE, CLM etc.) from BSIM4

Symmetry

— Currents, Caps & derivatives are symmetric @ VDS=0

— Provide accurate results in analog/RF simulations e.g.
Harmonic Distortion simulation

Physical Capacitance model

Smooth behavior in all regions of operations
— Faster Convergence
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BSIM6: AC Symmetry test

(C. McAndrew, IEEE TED, 2006)

Capacitance & derivatives are symmetric
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Model Validation: Long Channel
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Discussion

P 1 L
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Subthreshold

1. ForanappliedV, pocket MOSFET will have smaller surface potential

2. The carrier’s number depends exponentially on the surface potential
3.  Pocket MOSFET will show a much higher channel resistivity
4. R, > R;

1 0
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Discussion

P 1 L
= —— X —
qnu S
Strong Inversion
1. The resistivity of both channels drops dramatically

2. The resistance of the segments will be distinguished by their
lengths

3 R;»R, ; 1

Rp* R,
T io,p(f) + R Sipi(f) = Sip,i
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4. Sp(f) =
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Model Validation: Short Channel
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Discussion

* Subthreshold
S1p = Sipp

* Strong Inversion

The length of the pocket and the length of the intact channel
is comparable => a smoother and shallower transition

S5imi < Sip < Sipp

* Inacase of a very short channel MOSFET, the pockets from
the two sides merge => conventional shape of the transition
from subthreshold to strong inversion is restored
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Discussion

Unified Flicker Noise Model:

* Step 1) The noise power density of the local current
fluctuations S,q is calculated.

* Step 2) The contributions of the local noise sources to the
fluctuation of the output current are combined:

1 L
Sip(f) = ﬁf Sata(x, f)Axdx
0



Conclusions

* The usual practice of the unified flicker-noise model is inadequate
for MOSFETs with pocket implants, BSIM4, PSP, ...

* Of particular interest for near-threshold RF design:

The non-uniform bias-dependent impedance distribution causes
the subthreshold FN power density to be dominated by the
contribution from the source-side pocket

* The proposed model is the only method so far that can predict
FN power density as a function of the device geometry and
across different bias regimes.
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THANKS FOR LISTENING,
ANY QUESTION?



