iemn Institut d'Electronique, de Microélectronique et de Nanotechnologie

ESSDERC 2013

Electron delay analysis and image charge effect in AlGaN/GaN HEMTs on HR-Si(111)

A. Agboton¹, N. Defrance¹, S. Bouzid^{1,2}, P. Altuntas¹, V. Avramovic¹, A. Cutivet¹, R. Ouhachi¹, J.C. De Jaeger¹, H. Maher², M. Renvoise², P. Frijlink²

¹IEMN, UMR CNRS 8520, Villeneuve d'Ascq , France ²OMMIC Limeil-Brévannes, France

ale.agboton@ed.univ-lille1.fr

Université Lille1 Université de Valencien et du Hainaut-Cam

Introduction

This study regards the physical analysis of AlGaN/GaN HEMTs

How to determine the key factors in order to improve the frequency performance of AlGaN/GaN HEMTs ?

Transit time & small signal analysis !

 \Rightarrow Mirroring coefficient (α) extraction

Outline

1) Device structure and fabrication

- Material
- Process
- 2) Device characterization
 - DC & RF characteristics
 - Transit time analysis
- 3) Image charges extraction

Conclusion & Perspective

Material

Process

Ohmic contacts

- Ti/Al/Ni/Au metal stack (12/200/40/100 nm)
- Rapid Thermal Annealing : 850°C for 30s

 $R_c = 0.45 \ \Omega.mm$ and $\rho_c = 10^{-6} \ \Omega.cm^2$

Isolation

He⁺ ion multiple implantation Isolation current < 10 nA at 100V (5μm spacing)

Schottky contacts

- Ti/Al/Ti metal stack
- Tri-layer resist stack (PMMA/Copolymer/PMMA)
- Double-T-shaped gate with 90 nm footprint by electron beam lithography

Passivation

SiN (50nm) deposited by PECVD at 300°C

Contact pads Ti/Au (30/100 nm)

Process

DC characteristics

The measurement was performed using an Agilent SMU

DC characteristic

• g_{m Max} = 410 mS.mm⁻¹ (ext)

nstitut d'Electronique, de Micraélectronique et de Nanotechnologie

• V_{pinch-off} = -2.8V

emn

- I_{on} / I_{off} = 10⁴
- Good pinch-off not impacted by parasitic gate current leakage
- Short channel effect (DIBL = 92 mV/V)

RF characteristic

IEEE Publication as best power gain cut-off frequency (F_{Max}) performance for AlGaN/GaN HEMTs on Si(111) substrate [1]

de Micraélectronique et de Nanotechnologie

[1] S. Bouzid-Driad et al, "AlGaN/GaN HEMTs on Silicon Substrate With 206-GHz FMAX," IEEE Transactions on Electron Devices, vol. 34, no. 1, January 2013.

9

Transit time analysis

Total transit time (τ_{total}) is obtained by using Suemitsu Method [1]

$$\tau_{total} = \tau_{int} + \tau_{drain} + \tau_{cc} (+\tau_{pads})$$

$$\pi_{mm} = \frac{\pi_{m} + \pi_{m}}{\pi_{p}} + \frac{\pi_{p}}{\pi_{p}} (\pi_{p} + \pi_{p}) (\pi_{m} + \pi_{m}) + \pi_{m} (\pi_{p} + \pi_{p})$$

Equivalent circuit

 τ_{int} : transit time through the gate region

 τ_{drain} : transit time through the depleted region extension towards drain

 τ_{cc} : transit time due to the contribution of source and drain access

resistances and parasitic capacitances

[1] T. Suemitsu et al, "Intrinsic Transit Delay and Effective Electron Velocity of AlGaN/GaN High Electron Mobility Transistors," Japanese Journal of Applied Physics,vol. 44, no. 6, pp. L 211–L 213, January 2005.

10

Transit time analysis

Different contributions of transit time were extracted using the cut-off frequencies (F_t) measured for different bias conditions sweeping both V_{gs} & V_{ds}

Transit time analysis

Experimental delay time contributions					
V _{ds}	4V	6V	8V	10V	
τ _{int} (ps)	1.41	1.4	1.4	1.39	
τ _{drain} (ps)	0.13	0.29	0.46	0.57	
τ _{cc} (ps)	0.63	0.64	0.64	0.65	

 τ_{int} does_not depend on $V_{ds} \rightarrow$ saturation electron velocity for $V_{ds} > 4 V$ for V_{ds} = 4V E(400 KV/cm) > E_c

> Good agreement with theoretical critical electric field

- extension of drain depletion area
- self heating effects impacting ٠ source and drain resistances

- τ_{drain} increases with V_{ds}
- τ_{drain} = time for e⁻ to cross the depletion region to the drain side of the gate
- This transport of the negative sheet of charges induces image charges (α)

E↑

2DEG

 τ_{drain} experimentally deduced permits to extract the image charges coefficient [1]

$$\tau_{drain} = \frac{w_D}{\alpha \times v_e}$$

 W_D : drain depletion width V_e : electron effective velocity α : image charges coefficient

How to extract the effective electron velocity ?

How to extract the drain depletion width ?

[1] T. Palacios et al, "High-power AlGaN/GaN HEMTs for Ka-band applications," IEEE Electron Device Letters, vol. 26, no. 11, pp. 781–783, November 2005.

de Micraélectronique et de Nanotechnologie

How to extract the electron velocity used in $\tau_{drain} = \frac{w_D}{\alpha \times v_e}$?

$$v_e = \frac{L_{geff}}{\tau_{int}}$$

 L_{geff} : effective gate length τ_{int} : intrinsic delay time (measured)

No consensus was established about the L_{geff} consideration in the electron effective velocity extraction:

$$L_{geff} = L_g$$

$$v_e = 0.64.10^7 m. s^{-1}$$

$$v_e = 0.85.10^7 m. s^{-1}$$

[1] P.C. Chao, et al. "DC and Microwave Characteristics of Sub-0.1 -pm Gate-Length Planar-Doped Pseudomorphic HEMT's IEEE Transactions on Electron Devices, vol. 36, no. 3, pp.461-473, March 1989.

How to extract the drain depletion width used in $\tau_{drain} = \frac{w_D}{\alpha \times v_e}$?

$$W_{D} = \sqrt{\frac{2.\mathcal{E}r.\mathcal{L}_{0}.V_{GD,i}}{q.n_{s}}}$$

 ϵ_r : barrier relative Permittivity $V_{GD,I}$: intrinsic gate-drain voltage n_s : sheet carrier density

L₀: width of region where electric fields + lateral spreading of the depletion region are assumed to terminate

L₀ impact W_D and can be obtained using gate-drain breakdown voltage (BV_{gd}) or feedback capacitance (C_{gd}) [1]

Depletion width values					
	W _{D_calculated}	W _{D_litterature}			
AlGaN/GaN L _g =90 nm	74 -75 nm	54 nm			

[1] K. Higuchi et al" Optimum Design and Fabrication of InAlAs/InGaAs HEMT's on GaAs with Both High BreakdownVoltage and High Maximum Frequency of Oscillation" IEEE Transactions on Electron Devices, vol. 7, pp.1312-1318, July 1999

Determination of α after evaluation of v_e and w_D

 $\boldsymbol{lpha} = rac{\boldsymbol{\mathcal{W}}_{D}}{\boldsymbol{\mathcal{T}}_{drain} imes \boldsymbol{\mathcal{V}}_{e}}$

Mirroring coefficient value

	α_{exper}	$\boldsymbol{\alpha}_{simulation}$	
AlGaN/GaN L _g =90 nm	$\alpha(BV_{GD})$	α (C _{gd})	α
	3.35	3.19	3.0

Good agreement between experimental method & Monte-Carlo-Simulation [1]

iemn Institut d'Electronique, de Microélectronique et de Nanotechnologie UMR CARIS 5820

[1] T. Palacios et al, "High-power AlGaN/GaN HEMTs for Ka-band applications," IEEE Electron Device Letters, vol. 26, no. 11, pp. 781–783, November 2005.

Conclusion & Perspective

✓ Analysis of the origin of drain delay in AlGaN/GaN HEMTs presenting f_{MAX} at the state of the art

 τ_{drain} has a detrimental contribution when V_{ds} increases

✓ The frequency performance can be further improved at high bias mitigating thermal effects (role of $R_s \& R_d$) and designing innovative topologies / passivation schemes (role of C_{gd})

✓ First experimental extraction of the image charges based only in drain delay measurement

 \checkmark $\alpha \approx 3$ is in accordance with the predicted results demonstrated by Monte-Carlo simulation

Does the epitaxial stack affects the image charges coefficient ?

Aknowledgements

Alain AGBOTON

IEMN – UMR CNRS 8520 Avenue Poincaré – CS 60069 59652 Villeneuve d'Ascq Cedex

E-mail: ale.agboton@ed.univ-lille1.fr Tel. +33 3 20 19 78 71

