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Outline

• Motivation: Harvesting solar energy by rectennas.

• Current status: RF harvesting• Current status: RF harvesting
• Experimental and simulation results.

• Rectification issues• Rectification issues.

• A design model for resonant tunneling in metal-
insulator-insulator-metal (MIIM) rectifiersinsulator insulator metal (MIIM) rectifiers
• Theory
• Results.

• Conclusions.
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Solar Energy 

Sun 3.8 times
Geothermal 1 time
Wind 0.5
Biomass 0.4
Hydro 0 15Hydro 0.15
Tidal/Ocean 0.05
Source: Dr. Joachim Nitsch750 THz 430 THz 170 THz 120 THz

• Solar energy has the potential to provide 2850 times the total global 
needs.
Th t ti l f ll bl i 3078 t t l l b l• The potential of all renewable energy resources is 3078 x total global 
needs.

• The sun provides enough energy in one day, to accommodate the needs 
f E th’ i h bit t f 25 ( 1 h f 1 !)
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of Earth’s inhabitants for over 25 years (or 1 hour for 1 year!)



Rectenna (Rectifying Antenna) vs Solar Cells

LOADAntenna
LPF & 
Impedance 
matching

Rectifier
DC 
pass 
filter

Rectenna:
• Capture the EM waves in broad-

b d t

matching filter

Solar Cell:
• Narrow band.

band antennas:
• Operates all day and night.

• The technology far less expensive 
than photovoltaics

• can be improved by multi junction cells.
• Operate in daylight only.
• Expensive.

than photovoltaics.
• Very high efficiencies with full 

wave rectification (> 80%).

• Low efficiency:
• Typical efficiency of commercial 

arrays: 15-20%.
• Maximum efficiency in research labs:

• Absorption at all frequencies.
• Omnidirectional.

• Maximum efficiency in research labs: 
50%.

• Low absorption at low frequencies.
• Sensitive to direction of incident light.
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Omnidirectional.g



10 GHz Rectenna Results*
• Uniform directional antenna pattern.
• Below - 6 dB reflection threshold with 1 mm feed gap.
• Standard Schottky diode used as rectifier.

140

• Maximum dc voltage is proportional to number of 
elements in the array.
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THz Solar Rectenna Design

• Two circular patch antenna.
Th MIM MIIM tifi b t t i l• The MIM or MIIM rectifier between two circles.

• Five process steps including two patterning steps.

PATENT Y H S H ll Y Sh R t 2010 A l N GB1017401 9
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PATENT: Y. Huang, S. Hall, Y. Shen; Rectenna 2010, Appl. No. GB1017401.9



Rectifiers: the largest challenge
• p-n junction diodes:

• Switching speed is limited by minority carrier charge storage.
• Maximum frequency: 0.2 THz.

• Schottky diodes:
• Are faster since minority carrier storage is negligible.
• Switching speed is limited by parasitic capacitance.g p y p p
• Maximum frequency: 5 THz.

• MIM  and MIIM diodes:
• Transport is limited by tunneling rate.p y g
• Transit time ~ 1/tunneling probability (circa fs).
• Maximum frequency: 100 THz (MIM), > 100 THz (MIIM).

• Geometric diode:
• Small diode capacitance.
• Graphene a promising candidate

due to its long electron mean free path.
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• Maximum frequency: 28 THz.



MIM and MIIM Diodes

Metal 1

Dielectric

Metal 1 Metal 2

Dielectric Metal 1 Metal 2

Dielectrics
1            2

Metal 2
Metal 1 Metal 2

Symmetric MIIM

• MIM: current transfer is by direct or FN 

Asymmetric MIM MIM at Zero Bias

Metal 1

Potential Well
Bound States

tunneling.
• MIIM: tunneling probability is increased 

by bound states in the potential well at 
iti bi t M t l 2

Metal 2
Dielectrics
1                    2

positive bias to Metal 2.
• Resonant tunneling through bound 

states enhances the current and transit 
speed.
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speed.
MIIM Positive Bias at Metal 2



MIIM Design Model
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• Hamiltonian matrix is made using a set of localized base states in the stack.
• Eigenstates /energy levels are found by diagonalization or solving time independent 

S h ödi ti

layer 1 Layer 2
Metal 2Metal 1

Schrödinger equation.
• Only states localized in the potential well (lower than Elmax and Ermax) are considered.
• For each bound state in the 1D well, there are also a set of transverse excitations 

which generate a band of closely spaced states
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which generate a band of closely spaced states.



Bound States
Thickness of Second Oxide = 1 nm 0 0

Thickness of Second Oxide = 1 nm 
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• Number of bound states increases with thickness of first oxide.
• The maximum number of states is when the left and right barriers are at the

 Thickness of First Oxide [nm] 1 2 3 4 N

Thickness of First Oxide [nm]

The maximum number of states is when the left and right barriers are at the 
same energy level (circa 2 V on this structure).

• By increasing applied voltage the bound states leak to the right.
• Increasing band offset between two oxides increases the number of bound 
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g
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Current Density Calculation
• A modified multi-barrier Tsu-Esaki method* is used.

( ) ( )[ ]
( )[ ] x

FLx
xcoeffLRRL dE

kTVEE
kTEEETqkTmJJJ ∫

∞
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⎪
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⎬
⎫
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⎪
⎨
⎧ −+

=−= 32

*

1
exp1ln

2 h

• Dielectric stack: multiple slices of oxide with different barrier heights.
• J depends on DoS (E) and average occupancy of each state (uses F-D)

( ) ( )[ ] x
appFRx

xcoeffLRRL kTqVEE∫→→
⎪⎭
⎬

⎪⎩
⎨ −−+032 exp12 hπ

J depends on DoS (E) and average occupancy of each state (uses F D).
• Transmission probability Tcoeff calculated by transfer matrix (TM) model for 

tunneling through multiple barriers, containing resonant states.
• Uses WKB for wave-function at each ‘slice’ through a potential barrier byUses WKB for wave function at each slice  through a potential barrier by 

constructing a piecewise constant TM for each ‘slice’.

( )[ ]{ }jxjBjTj dEqmP 21*2exp −−= φ
• Tcoeff, hence J depend on both barrier height 

and energy, or the area under CB.
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MIIM Current
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Tunneling is limited only by the 
large band gap oxide.

FN Oxide Voltage = 1.5 V
Bound States = 3

Direct tunneling through the right 
oxide and FN tunneling in the left 

Oxide Voltage = - 1 V Sharp rise in current due to 
resonant tunneling into bound 
states in potential well.
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Rectification

• Small signal rectification is realized by nonlinearity of device.
• Dynamic resistance:y

• Low values desirable for 
impedance matching to antenna
and to supply sufficient current to load.

pV
d dI

dVr =

• Responsivity defined as the ratio of rectified dc current to input ac power:

d

d
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dc
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(Square law rectification using the first two terms in Taylor’s expansion.)
• Power efficiency defined as rectified dc power to input ac power:

dVin rIP p 22

P

• Main challenge: device area, trade-off between rd (~ tox/A) and 
di d i C ( A/ ) A ibl l i d
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diode capacitance, CD (~A/tox ). A possible solution: reduce ε.
•



MIIM Results
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discrete nature of bound states. -2 -1 0 1 2

Applied Voltage, V [V]



Design Considerations

Metal 1 Metal 2

Dielectrics
1            2

Metal 1 Metal 2

Dielectrics
1            2

Engineering of band offsets and oxide thickness• Engineering of band offsets and oxide thickness.
• Optimum thickness of low band-gap dielectric is 3-4 nm with 1 nm of 

the large band gap dielectric.
• Thicker dielectrics show smaller current and hence larger dynamic• Thicker dielectrics show smaller current and hence larger dynamic 

resistance.
• The larger the band offset between two dielectrics, more benefit from 

resonant tunneling.g
• Resonant tunneling occurs at lower voltages with lower barrier height 

between metal contact to left oxide.
• Dielectrics with large electron affinity have larger band offset with large 
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band gap dielectric (Al2O3) and lower barrier height to metal contact.



Comparison of Structures
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y
left metal, hence the largest effect of RT.
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Conclusions
• Rectenna has the potential of harvesting solar energy.

• A working RF rectenna for 10 GHz using circular patch antenna is reported and 
solar energy (THz) rectenna design with MIIM diodes as rectifier is proposed.gy ( ) g p p

• MIIM diodes benefit from resonant tunneling within bound states, increasing the 
operating frequency to a few 100 THz, in the range of light spectrum.

• The optimum thickness of MIIM oxide layers is 1 nm for large bandgap and 3 4• The optimum thickness of MIIM oxide layers is 1 nm for large bandgap and 3-4 
nm for small bandgap dielectrics.

• Al2O3 is the best choice for second oxide because of its low electron affinity 
(makes the highest barrier with first oxide)(makes the highest barrier with first oxide).

• The best options for metal contacts are low work function metals (Al, Cr, W, …) 
to benefit from bound states at lower voltages.

Th hi h t tifi ti l t d i i t d hi h t i it i• The highest rectification, lowest dynamic resistance, and highest responsivity is 
from Al/Nb2O5/Al2O3/Al structure since

• The largest band offset between Nb2O5 and Al2O3,
L t b i h i ht ith l ft t l
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• Lowest barrier height with left metal.
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