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Introduction

Why label-free FET sensors?
Alternative promising techniques?

mass spectroscopy

microcantilevers

surface  plasmon..

real-time, more reliable and durable

simpler technology → should compete with ELISA test

less expensive

easier to be integrated towards home point-of-care

FET sensors evolved from ISFETs into SiNWs:

Implementation of multi-gates: lateral, back-gate

high-k material for full pH response: HfO2 → Nernst limit: 59 mV/pH

Highly scaled SiNWs → higher analyte-analyzer interaction

Mass production and integration are still challenging
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Introduction

Why FinFET sensors?

are they more pH-sensitive?

They are not.

they do match  today’s technology requirements:

advanced channel control → stability, reproducibility

realistic power supply scenarios 

concrete integration with CMOS ICs

no degradation upon scaling 

accurate micro- and nanoelectronic models

Enhanced read-out can compensate ultra-sensitivity

“A fully depleted lean-
channel transistor 
(DELTA)-a novel 
vertical ultra thin SOI 
MOSFET”, Hisamoto D., 
IEDM ‘89 
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FinFET Fabrication and

Microfluidic Platform Assembly



FinFET Fabrication

SiO2/Si3N4/HSQ deposition 

PEC assisted e-beam lithography

Si3N4 Deep Reactive Ion etching

Vertical fins RIE

Si3N4 spacers creation

Si anisotropic etching 

FEA assisted wet oxidation

Si3N4 hot phosphoric acid

S/D N+ implantation (LTO + RTA) 

SiO2 DIP Hydrofluoric Acid

Atomic Layer Deposition (HfO2)

Argon Ion Milling for VIAS

AlSi1% Lift Off Metallization
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p-type BULK substrate
n-channel fully depleted FinFET
Local SOI by “Spacers Technology”
20 nm < TFin < 40 nm
65 < HFin < 150 nm
8 µm < LFin < 12 μm
HfO2 gate oxide

SU-8
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S. Rigante, P. Scarbolo, D. Bouvet, “High-k dielectric FinFETs towards Sensing Integrated Circuits”, Ultimate Integration on 
Silicon (ULIS), 2013 14th International Conference 
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FinFET Fabrication
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One die incorporates:
FinFET based sensors and metal gate transistors (single and multi wires)
Amplifying architectures based on two FinFET components

Au 25 μm wire ball bonding

Epotecny conductive glue

SU-8

AlSi connections

Sensor FinFETs

Inverter FinFETs

Metal Gate FinFETs

Microfludic Platform Assembly
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Devices location in µ-fluidic channels

Chip carrier for PCB connection with a 
total of 48 addressable devices

EPOXY preventing contact 
between Au wires and liquid

PTFE tubes connected to set-up 
andreference electrode PDMS integrating µ-fluidic channels 

for electrolyte flow 

Flow through Ag/AgC reference electrode

Complete PDMS embedding

Microfludic Platform Assembly
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Measurements



Interface thermal SiO2 (≈nm) + HfO2 → HYSTERESIS ≈ 15 mV
It is true only if SiO2/HfO2 is «as deposited» or the annealing is done after metallization
The metal prevents Oxygen chemical reactions  → no extra growth of silicate

* Results based on the work performed 
by CMi (Center of MicroNanotechnoly, 
EPFL) and characterized by P. Scarbolo
(NanoLab, EPFL)
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FinFET Fabrication

C-V measurements: εHfO2  ≈ 
16.5 
Vbreakdown ≈ 6.7 V with leakage 
current Ileak < 1 pA at Vg = 2 V 

A = 120 x 120 μm2

T = 10 nm HfO2

A = 120 x 120 μm2

T = 10 nm HfO2

A = 120 x 120 μm2

T = 10 nm HfO2
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|VIH – VIL|= 0.1 V

Measurements
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Good electrical features → Depletion devices 

Very low bulk contribution if Vb = 0 V

Good gating response: ∆Id = 33 nA/pH

Monotonic expected ∆Vth

Bousse L., J Chem Phys (1982),76(10), 5128-33 
solAgAlsolgref VVV  

∆Vth is not constant and “full”

“Liquid” SS > “Metal” SS 

Vg = 0 V

Measurements
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Two n-MOS FinFETs → common source depletion-mode inverter 
The driver transistor is the sensor, the load is not in contact with liquid
∆Vout (∆ Vth) is LINEAR and AMPLIFIED
The gain is independent from ∆Vin /pH
A = ∆Vout / ∆Vin ≈ 6.4 ← obtained only through device connection

FinFETs-based Am plifier

pH ΔV [m V]in ΔV [m V]out A  =  Δ ΔV / Vin ou t

3-4 30 185 6.2

4-5 6 40 6.6

5-6 27 174 6.5

6-7 5 31 6.2

7-8 16 102 6.4

17 m V/pH 107 m V/pH 6.4 

Measurements

Bucharest, 19th September 2013,  S. Rigante



Depending on Vref and S → high 
∆Vout ≈ 175 mV/pH

Negligible background noise:

with  σ = 2.6 mV

Negligible drift in short-time 
periods

Vout vs. time

…in kinetic studies, fast reaction cannot be measured in steady-state

…Vref sweep can have hysterical components → small ∆Vth ≠ drift
For fast read-out and small ∆Vth → fixed Vref and ∆Vout /Vout adjustement

DS

N
=

DVout

s
» 76

Si Bulk

Si Fin

SiO2

Measurements
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Stability measurements over 4.5 days
8nm HfO2 gate oxide
buffer solution at pH = 6
different nanowires

Similar drift for different wires
Drift  ≈ 0.13 mV/h
∆Vth drift  ≈ 0.02 mV/h

Measurements
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Conclusions



A well known architecture for (nano)electronics but not specifically used for 
sensing has been designed, fabricated and studied:

FinFETs with H/W > 3 have shown pH response and stability;

Excellent metal-gate FinFETs have the same sensor architecture;

Connection of two n-FinFETs → ∆Vth in-situ amplification → frequency readout

The match between EDA simulations and experiments has been verified;

The consumed DC power is very low, < 5 μW;

HfO2 has been implemented for both sensing and readout elements;

High-k dielectric FinFETs are a high profile candidates as both sensing and 
electronic unit for Integrated CMOS compatible Sensing Circuit, preserving 
performances under scaling and ensuring low power consumption.   

30Bucharest, 19th September 2013,  S. Rigante



A well known architecture for (nano)electronics but not specifically used for 
sensing has been designed, fabricated and studied:
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High-k dielectric FinFETs are a high profile candidates as both sensing and 
electronic unit for Integrated CMOS compatible Sensing Circuit, preserving 
performances under scaling and ensuring low power consumption.   
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