

"Low Power FinFET pH-Sensor with High-Sensitivity Voltage Readout"

S. Rigante¹, P. Livi², M. Wipf³, K. Bedner⁴, D. Bouvet¹, A. Bazigos¹, A. Rusu⁵, A. Hierlemann² and A.M. Ionescu¹

¹Nanoelectronic Devices Laboratory, EPFL, Lausanne, Switzerland
 ²Bio Engineering Laboratory, ETH Zurich, Basel, Switzerland
 ³Department of Physics, University of Basel, Switzerland
 ⁴Laboratory for Micro- and Nanotechnology, PSI, Villigen, Switzerland
 ⁵ "POLITEHNICA" University Bucharest, Romania

ESSDERC 2013, Bucharest 19th September

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Introduction

Introduction **FET sensors**

- ➡ Why label-free FET sensors?
 - Alternative promising techniques?
 - mass spectroscopy
 - microcantilevers
 - surface plasmon..

real-time, more reliable and durable
simpler technology \rightarrow should compete with ELISA test
less expensive

easier to be integrated towards home point-of-care

➡ FET sensors evolved from ISFETs into SiNWs:

Implementation of multi-gates: lateral, back-gate

- \checkmark high-k material for full pH response: HfO₂ \rightarrow Nernst limit: 59 mV/pH
- \checkmark Highly scaled SiNWs \rightarrow higher analyte-analyzer interaction

Mass production and integration are still challenging

Bucharest, 19th September 2013, S. Rigante

Introduction FinFET sensors

➡ Why **Fin**FET sensors?

➡ are they more pH-sensitive?

🗲 They are not.

they do match today's technology requirements:

✓ advanced channel control → stability, reproducibility
 ✓ realistic power supply scenarios
 ✓ concrete integration with CMOS ICs
 ✓ no degradation upon scaling

accurate micro- and nanoelectronic models

Enhanced read-out can compensate ultra-sensitivity

Introduction HfO₂ for full pH response

1556 Gerald Lucovsky: Transition from thermally grown gate dielectrics

TABLE I. Classification of dielectrics, including amorphous morphology, average electronegativity difference, ΔX , average bond ionicity, I_b , and metal and oxygen atom coordinations.

Dielectric	ΔX	Ib	Coordination	Coordination
Continuous random networks			metal/silicon	oxygen
SiO ₂	1.54	0.45	4	2.0
CRNs with network modifiers				
Al ₂ O ₃	1.84	0.57	4 and 6 (3:1 ratio)	3.0
Ta ₂ O ₅	1.94	0.61	6 and 8 (1:1 ratio)	2.8
TiO ₂	1.90	0.59	6	3.0
(ZrO ₂) _{0.1} (SiO ₂) _{0.9}	1.61	0.48	8 and 4	2.2
(ZrO ₂) _{0.23} (SiO ₂) _{0.77}	1.70	0.51	8 and 4	2.46
(ZrO ₂) _{0.5} (SiO ₂) _{0.5}	1.88	0.59	8 and 4	3.0
(TiO ₂) _{0.5} (SiO ₂) _{0.5}	1.72	052	6 and 4	2.5
$(Y_2O_3)_1(SiO_2)_2$	1.88	0.59	6 and 4	2.86
$(Y_2O_3)_2(SiO_2)_3$	1.93	0.61	6 and 4	3.0
$(Y_2O_3)_1(SiO_2)_1$	1.99	0.63	6 and 4	3.11
$(Al_2O_3)_4(ZrO_2)_1$	2.02	0.64	4 and 8	3.0
$(Al_2O_3)_3(Y_2O_3)_1$	1.97	0.62	4 and 6	3.0
Random close packed ions				
HfO ₂	2.14	0.68	8	4.0
ZrO ₂	2.22	0.71	8	4.0
$(La_2O_3)_2(SiO_2)_1$	2.18	0.70	6 and 4	3.5
Y ₂ O ₃	2.22	0.71	6	4.0
La ₂ O ₃	2.34	0.75	6	4.0

FinFET Fabrication and

Microfluidic Platform Assembly

SiO₂/Si₃N₄/HSQ deposition

- PEC assisted e-beam lithography
- Si₃N₄ Deep Reactive Ion etching
- Vertical fins RIE
- Si₃N₄ spacers creation
- Si anisotropic etching
- **E** FEA assisted wet oxidation
- Si₃N₄ hot phosphoric acid
- S/D N+ implantation (LTO + RTA)
- SiO₂ DIP Hydrofluoric Acid
- Atomic Layer Deposition (HfO₂)
- Argon Ion Milling for VIAS
- AlSi1% Lift Off Metallization

- I SiO₂/Si₃N₄/HSQ deposition
- PEC assisted e-beam lithography
- Si₃N₄ Deep Reactive Ion etching
- Vertical fins RIE
- Si₃N₄ spacers creation
- Si anisotropic etching
- **E** FEA assisted wet oxidation
- Si₃N₄ hot phosphoric acid
- S/D N+ implantation (LTO + RTA)
- SiO₂ DIP Hydrofluoric Acid
- Atomic Layer Deposition (HfO₂)
- Argon Ion Milling for VIAS
- AlSi1% Lift Off Metallization

- I SiO₂/Si₃N₄/HSQ deposition
- PEC assisted e-beam lithography
- Si₃N₄ Deep Reactive Ion etching
- Vertical fins RIE
- Si₃N₄ spacers creation
- Si anisotropic etching
- **E** FEA assisted wet oxidation
- Si₃N₄ hot phosphoric acid
- S/D N+ implantation (LTO + RTA)
- SiO₂ DIP Hydrofluoric Acid
- Atomic Layer Deposition (HfO₂)
- Argon Ion Milling for VIAS
- AlSi1% Lift Off Metallization

- SiO₂/Si₃N₄/HSQ deposition
- PEC assisted e-beam lithography
- Si₃N₄ Deep Reactive Ion etching
- Vertical fins RIE
- Si₃N₄ spacers creation
- Si anisotropic etching
- **E** FEA assisted wet oxidation
- Si₃N₄ hot phosphoric acid
- S/D N+ implantation (LTO + RTA)
- SiO₂ DIP Hydrofluoric Acid
- Atomic Layer Deposition (HfO₂)
- Argon Ion Milling for VIAS
- AlSi1% Lift Off Metallization

- SiO₂/Si₃N₄/HSQ deposition
- PEC assisted e-beam lithography
- Si₃N₄ Deep Reactive Ion etching
- Vertical fins RIE
- Si₃N₄ spacers creation
- Si anisotropic etching
- E FEA assisted wet oxidation
- Si₃N₄ hot phosphoric acid
- S/D N+ implantation (LTO + RTA)
- SiO₂ DIP Hydrofluoric Acid
- Atomic Layer Deposition (HfO₂)
- Argon Ion Milling for VIAS
- AlSi1% Lift Off Metallization

- \blacksquare SiO₂/Si₃N₄/HSQ deposition
- PEC assisted e-beam lithography
- Si₃N₄ Deep Reactive Ion etching
- Vertical fins RIE
- Si₃N₄ spacers creation
- Si anisotropic etching
- **E** FEA assisted wet oxidation
- Si₃N₄ hot phosphoric acid
- S/D N+ implantation (LTO + RTA)
- SiO₂ DIP Hydrofluoric Acid
- Atomic Layer Deposition (HfO₂)
- Argon Ion Milling for VIAS
- AlSi1% Lift Off Metallization

- SiO₂/Si₃N₄/HSQ deposition
- PEC assisted e-beam lithography
- Si₃N₄ Deep Reactive Ion etching
- Vertical fins RIE
- Si₃N₄ spacers creation
- Si anisotropic etching
- FEA assisted wet oxidation
- Si₃N₄ hot phosphoric acid
- S/D N+ implantation (LTO + RTA)
- SiO₂ DIP Hydrofluoric Acid
- Atomic Layer Deposition (HfO₂)
- Argon Ion Milling for VIAS
- AlSi1% Lift Off Metallization

- SiO₂/Si₃N₄/HSQ deposition
- PEC assisted e-beam lithography
- Si₃N₄ Deep Reactive Ion etching
- Vertical fins RIE
- Si₃N₄ spacers creation
- Si anisotropic etching
- FEA assisted wet oxidation
- **I** Si_3N_4 hot phosphoric acid
- S/D N+ implantation (LTO + RTA)
- SiO₂ DIP Hydrofluoric Acid
- Atomic Layer Deposition (HfO₂)
- Argon Ion Milling for VIAS
- AlSi1% Lift Off Metallization

- SiO₂/Si₃N₄/HSQ deposition
- PEC assisted e-beam lithography
- Si₃N₄ Deep Reactive Ion etching
- Vertical fins RIE
- Si₃N₄ spacers creation
- Si anisotropic etching
- FEA assisted wet oxidation
- Si₃N₄ hot phosphoric acid
- S/D N+ implantation (LTO + RTA)
- SiO₂ DIP Hydrofluoric Acid
- E Atomic Layer Deposition (HfO_2)
- Argon Ion Milling for VIAS
- AlSi1% Lift Off Metallization

- SiO₂/Si₃N₄/HSQ deposition
- PEC assisted e-beam lithography
- Si₃N₄ Deep Reactive Ion etching
- Vertical fins RIE
- Si₃N₄ spacers creation
- Si anisotropic etching
- FEA assisted wet oxidation
- **I** Si_3N_4 hot phosphoric acid
- S/D N+ implantation (LTO + RTA)
- SiO₂ DIP Hydrofluoric Acid
- E Atomic Layer Deposition (HfO_2)
- Argon Ion Milling for VIAS
- AlSi1% Lift Off Metallization

FinFET Fabrication FinFET overview

S. Rigante, P. Scarbolo, D. Bouvet, "High-k dielectric FinFETs towards Sensing Integrated Circuits", Ultimate Integration on Silicon (ULIS), 2013 14th International Conference

FinFET Fabrication FinFET overview

S. Rigante, P. Scarbolo, D. Bouvet, "High-k dielectric FinFETs towards Sensing Integrated Circuits", Ultimate Integration on Silicon (ULIS), 2013 14th International Conference

FinFET Fabrication A sensing common source amplifier

Microfludic Platform Assembly **Die overview**

One die incorporates:

- **W** FinFET based sensors and metal gate transistors (single and multi wires)
- Amplifying architectures based on two FinFET components

Microfludic Platform Assembly Microfluidic set-up

Flow through Ag/AgC reference electrode

PTFE tubes connected to set-up and reference electrode

Complete PDMS embedding

Chip carrier for PCB connection with a total of 48 addressable devices

EPOXY preventing contact between Au wires and liquid

PDMS integrating μ -fluidic channels for electrolyte flow

Devices location in μ -fluidic channels

Measurements

FinFET Fabrication SiO₂/HfO₂ characterization*

- Interface thermal SiO₂ (\approx nm) + HfO₂ \rightarrow HYSTERESIS \approx 15 mV
- It is true only if SiO₂/HfO₂ is **«as deposited**» or the **annealing** is done **after metallization**
- !! The metal prevents Oxygen chemical reactions \rightarrow no extra growth of silicate

Measurements T-CAD simulations for sensing circuits

[5] "FinFET for high sensitivity ion and biological sensing applications",
S.Rigante et al., Microelectron Eng, 88 (2011), 1864-1866.
[6] "Implementation of the symmetric doped double-gate
MOSFET model in Verilog-A for circuit simulation", J. Alvarado et al.,
Int. J. Numer. Model., 23 (2010), 88-106
[7] "FinFET integrated low-power circuits for enhanced sensing

applications", S. Rigante, P. Livi et al., 186 (2013), 789-795.

$I_d(V_{ref})$ and $I_d(V_g)$ characteristics

- I Good electrical features \rightarrow Depletion devices
- **!** Very low bulk contribution if $V_b = 0 V$
- I Good gating response: ΔI_d = 33 nA/pH
- **Monotonic** expected ΔV_{th}

- ΔV_{th} is not constant and "full"
- *Liquid SS > "Metal" SS

Metal-Gate	Liquid-Gate	
$I_{on}/I_{off}1 \approx 10^6$	$I_{on}/I_{off} \approx 10^4$	
SS = 72 mV/dec	SS = 185 mV/dec	

Bousse L., J Chem Phys (1982),76(10), 5128-33

 $V_{DD} = 2 V$

 $A = \Delta V_{out} / \Delta V_{in}$

0.6 0.8 1.0

Measurements $V_{out}(V_{ref})$ characteristics

Two n-MOS FinFETs \rightarrow common source depletion-mode inverter

- The driver transistor is the sensor, the load is not in contact with liquid
- !! ΔV_{out} (ΔV_{th}) is LINEAR and AMPLIFIED
- The gain is independent from ΔV_{in} /pH !!

1.2

1.4

1.6

V_{OH}

pH 3 pH 4

pH 5 pH 6

pH 7

pH 8

Metal Inverter

2.0

1.5

1.0

0.5

0.0

0.4

Output Voltage, V_{out} [V]

A = $\Delta V_{out} / \Delta V_{in} \approx 6.4 \leftarrow$ obtained only through device connection !!

3 ΔV

1.2

1.1

1.48

pH increases

1.50

	FinFETs-based Amplifier				
pН	$\Delta V_{in}[mV]$	$\Delta V_{out}[mV]$	$A = \Delta V_{in} / \Delta V_{out}$		
3-4	30	185	6.2		
4-5	6	40	6.6		
5-6	27	174	6.5		
6-7	5	31	6.2		
7-8	16	102	6.4		
	[≈] 17 mV/pH	\approx 107 mV/pH	[≈] 6.4		

1.54

A = 6.2

 ΔV_{th}

1.52

- ...in kinetic studies, fast reaction cannot be measured in steady-state
- ...V_{ref} sweep can have hysterical components \rightarrow small $\Delta V_{th} \neq$ drift
- **I** For fast read-out and small $\Delta V_{th} \rightarrow fixed V_{ref}$ and $\Delta V_{out} / V_{out}$ adjustement

Measurements Long-term stability

Stability measurements over 4.5 days

- 連 8nm HfO₂ gate oxide
- buffer solution at pH = 6
- different nanowires

Similar drift for different wires
 Drift ≈ 0.13 mV/h
 ΔV_{th} drift ≈ 0.02 mV/h

Conclusions

Conclusions

A well known architecture for (nano)electronics but not specifically used for sensing has been designed, fabricated and studied:

- FinFETs with H/W > 3 have shown pH response and stability;
- Excellent **metal-gate FinFETs** have the **same sensor architecture**;
- \implies Connection of two n-FinFETs $\rightarrow \Delta V_{th}$ in-situ amplification \rightarrow frequency readout
- → The match between EDA simulations and experiments has been verified;
- The consumed **DC power is very low**, < 5 μ W;
- \Rightarrow HfO₂ has been implemented for both sensing and readout elements;

High-k dielectric FinFETs are a high profile candidates as both sensing and electronic unit for Integrated CMOS compatible Sensing Circuit, preserving performances under scaling and ensuring low power consumption.

Conclusions

A well known architecture for (nano)electronics but not specifically used for sensing has been designed, fabricated and studied:

High-k dielectric FinFETs are a high profile candidates as both sensing and electronic unit for Integrated CMOS compatible Sensing Circuit, preserving performances under scaling and ensuring low power consumption.

Thank you for your attention

I would like to thank all my NanoLab colleagues who contributed with many encouragements and useful discussions.

I would like to thank Aurélie Pezous (CSEM) for the Hot Phosphoric step during the fabrication process.

I would like to acknowledge Per-Erik Hellström (KTH) for the fruitful discussion on ALD for HfO₂.

I would like to acknowledge Matthieu Barthomé, Ralph Stoop from UniBasel-Nanoelectronics, Oren Knopfmacher from Stanford University-Chemical Engineering for the fruitful discussions.

The presented work has been financially supported through the Swiss Federal Program Nano-Tera (NanowireSensor) under contract reference 611_61.

swiss scientific initiative in health / security / environment systems

sara.rigante@epfl.ch