Novel Back-Biased UTBB Lateral SCR for FDSOI ESD Protections

Yohann Solaro^{1,2,3},

Pascal Fonteneau¹, Charles-Alexandre Legrand¹ Claire Fenouillet-Beranger^{1,3}, Philippe Ferrari², Sorin Cristoloveanu²

yohann.solaro@st.com

- Introduction & Context
- Lateral Silicon Controlled Rectifier (LSCR) Fabrication & Principle

- Introduction & Context
- Lateral Silicon Controlled Rectifier (LSCR) Fabrication & Principle
- LSCR Experimental Results

- Introduction & Context
- Lateral Silicon Controlled Rectifier (LSCR) Fabrication & Principle
- LSCR Experimental Results
- Conclusions

Electro-Static Discharge Damages

Electro-Static Discharge Damages

Gate oxyde breakdown

Drain junction filamentation

Interconnects damages

Electro-Static Discharge Damages

Gate oxyde breakdown

[Semenov, O., 1999]

ESDs are destructive events

Drain junction filamentation

Interconnects damages

Electro-Static Discharge Protection Requirements

- Principle & Design of a protection
 - "Robustness, Effectiveness, Speed, Transparency" [Amerasekera & Duvvury 2002]
- Z_{CLAMP} << Z_{CORF}
 - under ESD condition
- Z_{CORE} << Z_{CLAMP}
 - normal operation

• Electro-Static Discharge Protection Requirements

- Principle & Design of a protection
 - "Robustness, Effectiveness, Speed, Transparency" [Amerasekera & Duvvury 2002]
- Z_{CLAMP} << Z_{CORE}
 - under ESD condition
- Z_{CORE} << Z_{CLAMP}
 - normal operation
- Global or Local strategies

Electro-Static Discharge Protection Requirements

- Principle & Design of a protection
 - "Robustness, Effectiveness, Speed, Transparency" [Amerasekera & Duvvury 2002]
- Z_{CLAMP} << Z_{CORF}
 - under ESD condition
- Z_{CORE} << Z_{CLAMP}
 - normal operation
- Global or Local strategies

Reduced ESD design window in Fully Depleted SOI

Reduced ESD design window in Fully Depleted SOI

Reduced ESD design window in Fully Depleted SOI

- Device Geometry
 - From SOI PIN-Diode...

- Device Geometry
 - From SOI PIN-Diode...
- ...to SOI Lateral SCR (Thyristor)

- Device Geometry
 - From SOI PIN-Diode...

...to SOI Lateral SCR (Thyristor)

- Lateral N+/P/N/P+ arrangement
- SOI thickness = 7 nm
- BOX = 25 nm
- No Front Gate deposited [1]
- Si. Epitaxy (+15 nm) on whole structure (raised Source/Drain)

- Device Geometry
 - « Side Base Contacts »:
 - P-Base (B_P) can be tied to K (« locked » mode)
 - N-Base (B_N) left floating in this study
 - Ground-Plane (GP) used as a back gate

LSCR Principle 23

NPN Modulation

 NPNP = Thyristor = Two inter-linked **BJTs [1,2] with shared BC junctions**

[1] Moll et al., Proceedings of the IRE, 1956. [2] Sze, Wiley, 1981.

life.gugmented

LSCR Principle 24

NPN Modulation

- NPNP = Thyristor = Two inter-linked BJTs [1,2] with shared BC junctions
- NPN Base potential modulated by V_{Gb} ٠

[1] Moll et al., Proceedings of the IRE, 1956. [2] Sze, Wiley, 1981.

life.gugmented

LSCR Experimental Results

28

29

• The NPN bipolar is effectively Modulated !

- The NPN base potential is modulated by V_{Gb}
- The Base-Emitter barrier depends on V_{Gb}

• The NPN bipolar is effectively Modulated !

- The NPN base potential is modulated by V_{Gb}
- The Base-Emitter barrier depends on V_{Gb}
- V_{Gb} $\nearrow \Rightarrow I_{C eff}$ $\Rightarrow \beta_{NPN eff}$ \Rightarrow [1] [1] Colinge, IEEE TED, 1987.

NPN Modulation changes SCR triggering

• SCR Triggering point $(I_{t1,}V_{t1})$ is set by $\beta_{NPN} (L_P ...)$

 G_{b}

NPN Modulation changes SCR triggering

•
$$V_{Gb} \nearrow I_{C eff} ? \Rightarrow \beta_{NPN eff} ? \Rightarrow I_{t1,}V_{t1} \checkmark$$

 SCR Triggering point (I_{t1}, V_{t1}) is set by β_{NPN} (L_P, GP-type ...)

NPN Modulation changes SCR triggering

1

2

V_A [V]

 10^{-14}

0

B_P 'Locked'

4

5

3

- $V_{Gb} \nearrow J \Rightarrow I_{C eff} ? \Rightarrow \beta_{NPN eff} ?$ \Rightarrow I_{t1},V_{t1}
- SCR Triggering point (I_{t1}, V_{t1}) is set by β_{NPN} (L_P, GP-type...)

NPN Modulation changes SCR triggering

• SCR Triggering point (I_{t1}, V_{t1}) is set by β_{NPN} (L_P, GP-type, V_{Gb}...)

NPN Modulation changes SCR triggering

t_{epi}

•
$$V_{Gb}$$
 7 \Rightarrow $I_{C eff}$ 7 \Rightarrow $\beta_{NPN eff}$ 7
 \Rightarrow I_{t1} , V_{t1} \bowtie

- SCR Triggering point (I_{t1}, V_{t1}) is set by β_{NPN} (L_P, GP-type, V_{Gb}...)
- Strong capacitive coupling between P-base and back-gate allows floating-mode operation

NPN Modulation changes SCR triggering

t_{epi} t_{si} t_{BOX}

•
$$V_{Gb}$$
 7 \Rightarrow $I_{C eff}$ 7 \Rightarrow $\beta_{NPN eff}$ 7
 \Rightarrow I_{t1}, V_{t1}

- SCR Triggering point (I_{t1}, V_{t1}) is set by $\beta_{NPN} (L_P, GP-type, V_{Gb} ...)$
- Strong capacitive coupling between P-base and back-gate allows floating-mode operation

NPN Modulation changes SCR triggering

t_{epi} t_{si}

•
$$V_{Gb}$$
 7 \Rightarrow $I_{C eff}$ 7 \Rightarrow $\beta_{NPN eff}$ 7
 \Rightarrow I_{t1} , V_{t1}

- SCR Triggering point (I_{t1}, V_{t1}) is set by $\beta_{NPN} (L_P, GP$ -type, V_{Gb} ...)
- Strong capacitive coupling between P-base and back-gate allows floating-mode operation

Ground Plane (GP)

NPN Modulation changes SCR triggering

t_{epi} t_{si} t_{BOX}

•
$$V_{Gb}$$
 $\neg \Rightarrow I_{C eff}$ $\neg \Rightarrow \beta_{NPN eff}$ $\neg \Rightarrow I_{t1}, V_{t1}$

- SCR Triggering point (I_{t1}, V_{t1}) is set by $\beta_{NPN} (L_P, GP-type, V_{Gb} ...)$
- Strong capacitive coupling between P-base and back-gate allows floating-mode operation

• SCR Leakage @ V_{dd} = 1V

 Stronger Base-Emitter barrier means lower leakage

	N-GP		P-GP	
	'Floating'	'B _p locked'	'Floating'	'B _p locked'
I _{leak}	7	100	93	0.5
@ V _{Gb} = 0V	nA/μm	pA/µm	pA/μm	pA/μm
I _{leak}	0.9	0.7	17	1.1
@ V _{Gb} = -1V	pA/μm	pA/μm	fA/μm	pA/µm

- Transmission Line Pulse (TLP) High-Current measurements
 - No need of Base contacts
 - + V_{t1} adjustment with V_{Gb} is confirmed
 - Performance: I_{t2} ≈ 5mA/µm (TLP 100 ns)

Conclusions

Conclusions 43

- LSCR experimentally demonstrated and understood via TCAD in an Ultra-Thin-SOI technology:
 - I_{leak} < 20 fA/µm is achievable with adequate V_{Gb}
 - « Tunable V_{t1} » (adjustable to application) with Back Bias, GP-type, NPN Base length
- Controlled only with back gate biasing : No need of Base Contacts or Front Gate
- SOI-LSCR is fully compatible with standard FDSOI CMOS process
- TLP performances (ESD failure current) validates I_{t2}≈5mA/μm
- Adequate for « Core MOS » protection in 28nm FDSOI

BackUp Slides

Transient Characteristics for ESD

- Voltage Pulse with 50 ps RT and I_A = 1mA/µm
- For decreased L_{int :}
 - Overshoot Peak Voltage decreases from 9V to 3V
 - Device response time > (< 50 ps)

[Salman et al. 2006] [Cao et al. 2011]

LSCR Characterization

LSCR Characterization

NPN = « Back-Channel » NMOS

- NMOS Extraction of Threshold [1] & Swing in linear regime (V_D = 20mV)
- 850mV V_{th} shift N-GP to P-GP
- S = 95 mV/dec to 175 mV/dec

LSCR Characterization

• Effective NPN Gain control

- β_{NPN eff} is dramatically increased by back NMOS I_D current
- V_{Gb} < -1V allows a strong diminution of I_{leak} (20fA/μm)
- $\beta_{NPN eff}$ 7 : I_{t1} 4 V_{t1} 4

LSCRs 52

State of the Art

life.augmented

[Marichal et al. EOS/ESD 2005]

[Entringer et al. EOS/ESD 2006]

LSCRs I

State of the Art

[Cao et al. Microelectronics Reliab, 2011]

[Li et al. EOS/ESD, 2012]

53

