

IMPACT OF AL₂O₃ POSITION ON PERFORMANCES AND RELIABILITY IN HIGH-K METAL GATED DRAM PERIPHERY TRANSISTORS

M.AOULAICHE¹, A. FEDERICO², E. SIMOEN¹, R. RITZENTHALER¹, T. SCHRAM¹, H.ARIMURA¹, M. CHO¹, T. KAUERAUF¹, F. CRUPI², A. SPESSOT³, C. CAILLAT³, P. FAZAN³, H. -J. NA⁴, Y. SON⁵, K. B. NOH⁵, G. GROESENEKEN^{1*}, N. HORIGUCHI¹, A. THEAN¹.

1. Imec, Kapeldreef 75, 3001 Leuven, Belgium.

*also with KU Leuven.

2. University of Calabria.

3. Micron Technology Belgium, imec Campus.

4. Samsung Electronics assignee at imec.

5. SK-Hynix assignee at imec.

OUTLINE

- I. Introduction
- II. Samples description
- III. Performances
- IV. Defects characterization (noise and CP)
- V. Reliability (NBTI)
- VI. Conclusions

INTRODUCTION

✓ DRAM "periphery transistors":
MOSFET used in the DRAM peripheral circuitry e.g.

- Sense amplifiers
- Address decoders,
- High voltage applications

✓ **DRAM "periphery transistors"** are formed before the DRAM cell process.

Therefore they experience the high thermal budget related the DRAM cell process.

INTRODUCTION

 \succ Compared to logic applications, DRAM Periphery devices have more relaxed device specifications (L_G, EOT)

> Required **performance similar to that of logic transistors**, but with a number of additional challenges to be tacked: **low power low leakages** (low I_{OFF} and J_{G} mandatory)

HKMG is needed for future technologies to sustain the performance
Stacks surviving the aggressive anneal needed in a DRAM process (before silicidation, typically several hours above 600C)

Ref: S.Y. Cha, "DRAM Technology - History & Challenges" @ IEDM 2011 short courses for more details

imec

MARC AOULAICHE

- I. Introduction
- II. Samples description
- III. Performances
- IV. Defects characterization (noise and CP)
- V. Reliability (NBTI)
- VI. Conclusions

INVESTIGATED SAMPLES

Al2O3 capping is used in pMOSFETs for Vth adjustment

imec

- I. Introduction
- II. Samples description
- III. Performances
- IV. Defects characterization (noise and CP)
- V. Reliability (NBTI)
- VI. Conclusions

THRESHOLD VOLTAGE SHIFT AND LEAKAGE

~200mV V_{th} shift using Al_2O_3 independently of the capping location.

Lower EOT and higher I_G for AL_2O_3 below HfO₂.

→ Probably intermixing with the SiO₂ interfacial layer and K value change and Si/SiO₂ energy offset change.

imec

MARC AOULAICHE

- Higher EOT and lower mobility translate into lower ON current at fixed V_{TH} (trade-off between mobility and V_{TH} shift)
- No difference for capping above or below high-k

imec

- I. Introduction
- II. Samples description
- III. Performances
- IV. Defects characterization (noise and CP)
- V. Reliability (NBTI)
- VI. Conclusions

LOW FREQUENCY NOISE

LF noise is dominated by number fluctuations – i.e., trapping in the gate oxide.

imec

MARC AOULAICHE

LOW FREQUENCY NOISE

The trap profiles close to the valence band seem to be more sensitive to the additional cap layers.

[1]G. Ghibaudo, et .al. "Improved analysis of low frequency noise in field-effect MOS transistors," phys. stat. sol. (a), vol. 174, pp. 571-581, 1991.

[2]E. Simoen , et al. "On the flicker noise in submicron silicon MOSFETs," Solid-St. Electron., vol. 43, no. 5, pp. 865-882, May 1999.

[3] Z. Çelik and T.Y. Hsiang, "Study of 1/f noise in N-MOSFET's: Linear region," IEEE Trans. Electron Devices, vol. 32, no. 12, pp. 2797-2802, Dec. 1985

[27]F.P. Heiman et al. "The effects of oxide traps on the MOS capacitance," IEEE Trans. Electron Devices, vol. ED-12, pp. 167-178, Apr. 1965.

[28]I. Lundström et al., "Tunneling to traps in insulators," J. Appl. Phys., vol. 43, no. 12, pp. 5045-5047, Dec. 1972.

imec

VARIABLE FREQUENCY CHARGE PUMPING CURRENT

A slightly higher defects density in the SiO₂ interfacial layer for Al_2O_3 below HfO₂

M.Cho et al. "Study of the Reliability Impact of Chlorine Precursor Residues in Thin Atomic-Layer-Deposited HfO2 Layers" IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 54, NO. 4, 2007

imec

IMPACT OF Al₂O₃ LOCATION: BOTTOM OR TOP OF HfO₂

Trap profile follows the expected AI diffusion

imec

MARC AOULAICHE

- I. Introduction
- II. Samples description
- III. Performances
- IV. Defects characterization (noise and CP)
- V. Reliability (NBTI)
- VI. Conclusions

FI IN DRAM PERIPHERAL DEVICES • Interface defects and bulk defects induce a

Field

$\Delta \boldsymbol{V}_{\text{TH}} \boldsymbol{V} \text{ERSUS STRESS TIME}$

Higher density of bulk defects lower time exponent

imec

FIELD ACCELERATION

More bulk defects higher degradation at lower field and lower field exponent and lower field exponent

IMCC MARC AOULAICHE

DV_{TH} RELAXATION

- Faster Vth recovery for Al₂O₃ above HfO₂
- Relaxation for t > I ms is more sensitive to slow traps (farther from the interface)

imec

NBTI LIFETIME EXTRAPOLATION

NBTI is slightly degraded when AI_2O_3 in incorporated either below or above HfO_2

IMCC MARC AOULAICHE

NBTI LIFETIME EXTRAPOLATION

M. Cho, J-D. Lee, M. Aoulaiche, B. Kaczer, Ph.J. Roussel, T. Kauerauf, R. Degraeve, J. Franco, L.-Å. Ragnarsson, and G. Groeseneken, "Insight Into N/PBTI Mechanisms in Sub-1-nm-EOT Devices", IEEE Trans. On Elect. Dev., vol. 59, No. 8, pp.2042-2048, 2012.

imec

- I. Introduction
- II. Samples description
- III. Performances
- IV. Defects characterization (noise and CP)
- V. Reliability (NBTI)
- VI. Conclusions

CONCLUSIONS

- The defect density profiles from the low frequency noise and charge pumping current are in agreement with what can be expected from traps related to Al diffusion.
- \rightarrow The higher peak density of traps is at the location where the Al₂O₃ cap is inserted.
- Increased leakage current and reduced LF noise for AI_2O_3 below HfO_2 .
- NBTI is slightly degraded when Al_2O_3 in incorporated either below or on top of HfO_2 compared to the reference.

