Weibull Analysis of the Kinetics of Resistive Switches based on Tantalum Oxide Thin Films

Yoshifumi Nishi^{*}, Sebastian Schmelzer, Ulrich Böttger, Rainer Waser Institut für Werkstoffe der Elektrotechnik II, RWTH Aachen University, Germany *Advanced LSI Technology Laboratory, Corporate R&D Center, Toshiba Corporation, Japan

- Introduction
- Experimental
 - Samples and Basic Characteristics
 - Pulse Measurement
- Results and Discussion
 - Weibull Distribution of SET Time
 - Discussion about Joule Heating
- Conclusion

Introduction

- Experimental
 - Samples and Basic Characteristics
 - Pulse Measurement
- Results and Discussion
 - Weibull Distribution of SET Time
 - Discussion about Joule Heating
- Conclusion

Bipolar Resistive Switching Effects

- Observed in various metal oxides
 - TiO_x, TaO_x, HfO_x, SrTiO_x, ...

R. Waser et al., Adv. Mater. 21, 2632 (2009)

- Potential application to devices of next generation
 - High density nonvolatile memory (ReRAM)
 - Stateful logic operation J. Borghetti, et al., Nature 464, 873 (2010)
 - Neuromorphic computing, etc.

S. Yu, et al., IEDM 2012, S. Park, et al., IEDM 2012

- Mechanisms
 - Migration of oxygen vacancies or oxygen ions (Valence change memory , VCM)
 - Formation and rupture of a conductive path

R. Waser et al., Adv. Mater. 21, 2632 (2009)

Detailed mechanisms are not fully understood yet

Motivation and Objective

- Tantalum oxide (TaO_x) : one of the promising candidates for industrial application.
 - Stable operations over 10¹¹ cycles
 - Complementary resistive switch operation

M.-J. Lee, et al., Nat. Materials 10, 625 (2011)

- Previous studies to understand the basic physics
 - A conductive path and its composition detected by means of physical analysis techniques.
 F. Miao, et al., Adv. Mater. 23, 5633 (2011)
 - Dynamic features are yet unrevealed.

In this work...

The kinetics of the resistive switch phenomena in TaOx thin films are investigated.

- Introduction
- Experimental
 - Samples and Basic Characteristics
 - Pulse Measurement
- Results and Discussion
 - Weibull Distribution of SET Time
 - Discussion about Joule Heating
- Conclusion

Sample Preparation

pressure (Pa)	100			
temperature (°C)	270	300	330	360
time (min)	5			
thickness (nm) *	5	7	9	11
* measured by XRR				

Forming and DC Characteristics

Thin (5, 7 nm) and thick (9, 11 nm) films are expected to have different switching mechanisms.

In this work, we focus on and compare two cases, 5 and 11 nm. 8

- Introduction
- Experimental
 - Samples and Basic Characteristics
 - Pulse Measurement
- Results and Discussion
 - Weibull Distribution of SET Time
 - Discussion about Joule Heating
- Conclusion

Weibull Distribution

Cumulative probability of time to SET *F*(*t*)

$$F(t) = 1 - \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right]$$
$$-\ln(1-F) \propto t^{\beta}$$

Switching rate R(t) at time t

$$R(t) = \frac{dF}{dt} / (1-F) \propto t^{\beta-1} \quad \text{increases} \\ \text{decreases} \quad \text{with time for} \quad \frac{\beta > 1}{\beta < 1}$$

log {-In(1-F)}

Slope β

 $\beta > 1 \rightarrow$ SET is induced by an aging process that is accelerated with time ; progressive phenomenon.

 $\beta < 1 \rightarrow$ SET is a failure event induced by the stress through the already-existing defects ; passive phenomenon.

log (t)

Weibull Plots of the SET Time (5 nm)

Weibull Plots of the SET Time (11 nm)

What is the Driving Force in the β > 1 Region?

• In STO: Joule heating accelerate the SET

• In HfO_x : Pulse intervals affect the SET speed.

• In TaO_x ...

Formation of a nanocrystalline Ta_2O_5 around the conductive path : relevance of resistive switch to Joule heat.

F. Miao, et al., Adv. Mater. 23, 5633 (2011)

Split pulse measurement

"Split" distribution deviates from that of "single" in β > 1 region.

• $\beta > 1$: Pulse intervals (i.e. heat dissipation) affect the distributions. \rightarrow Joule heating contribute to SET mechanism.

• β < 1 : Heat dissipation has no effect on the distributions \rightarrow SET is induced by the applied electric field only.

Split pulse measurement (11 nm)

Filled : split pulse Open : single pulse

Distributions of "split pulse" and "single pulse" overlap;
Heat dissipation does not influence the distributions.
→ Effect of the electric field to SET is more dominant than that of the Joule heating.

Distributions of Energy for SET (5 nm)

Distributions of E_{SET} in β > 1 mode indicate that the heat generated by HRS current is a key factor in the SET mechanism. ¹⁹

Distributions of Energy for SET (11 nm)

Distributions of E_{SET} look similar to those of t_{SET} .

Conclusion

- Statistics of the time to SET in TaO_x thin films are well explained in terms of Weibull distribution.
 - Both β > 1 and β < 1 distributions appear in 5 nm film.
 - $-\beta$ < 1 distribution is dominant in 11 nm film.
- Split pulse measurement indicates the difference in the SET mechanisms between $\beta > 1$ and $\beta < 1$ distributions.
 - β > 1 distribution is affected \rightarrow Joule heating is relevant to the SET mechanism.
 - β < 1 distribution is not affected \rightarrow Joule heating is less relevant in this case.
- Weibull plots of the total energy for SET support the hypothesis of the Joule heating in $\beta > 1$ mode.

Thank you for your attention.

Weibull Plots of the SET Time (7, 9 nm)

Size dependence of the HRS current

