

September 16-20, 2013, Bucharest Romania

Porous Si Dielectric Parameter Extraction for use in RF Passive Device Integration: Measurements and Simulations

P. Sarafis, E. Hourdakis, A. G. Nassiopoulou

NCSR "Demokritos", IMEL Athens, Greece

for nanoelectronics sensors

Outline

- 1. Introduction
- 2. Porous Si as an RF material
- 3. Dielectric Parameters of porous Si
- 4. Dielectric Characterization of porous Si
 - 4.1. Evaluation of the Characterization Method
 - 4.2. Comparison between Measurements and Simulations
- 5. High-performance RF devices on porous Si
- 6. Conclusions

Introduction

- Why RF circuits?
 - Wireless Communications

 seign
 FM (100 MHz):
 3 m

 GSM (900 MHz):
 33 cm

 Wi-Fi (2.4 GHz):
 12.5 cm

 Q-band (33-50 GHz):
 9-6 mm

 W-band (75-110 GHz):
 4-2.7 mm

- Why on-chip RF circuits?
 - Cost reduction.
 - Reduction of losses and parasitics due to wirebonds.

On-chip RF circuits - Bottlenecks

Standard CMOS silicon (1-10 Ω.cm) is
a very lossy material => high RF losses in the substrate
a high ε_r material (11.7) => e.g. high crosstalk

This mainly affects:

- Integration of RF passive devices (Tlines, inductors, filters ...)
- Integration of antennas

Some examples

- I. Difficult to achieve high Zc transmission lines
- 2. Difficult to achieve inductors that resonate at high frequencies
- 3. High energy loss in the surface waves inside the substrate

On-chip RF passives – Solutions for high performance

On chip solutions under investigation

• New topologies:

> patterned metal shield below the devices e.g. Slow-wave CPW moderate-losses, CMOS processing, low-cost

... not applicable to all devices

RF Devices

- Trap-rich HR-SOI
 - >HR-Si with a trap-rich layer for use in SOI processes low-losses, SOI CMOS processing, expensive

Porous Silicon

> local formation of porous Si on a bulk wafer, underneath the passive devices low-losses, compatible with batch Si processing, low-cost

What is Porous Silicon?

□ Formation:

> Electrochemical dissolution of Si in HF solution

Panagiotis Sarafis, NCSR "Demokritos"/ IMEL, Greece

Porous Silicon as an RF material

Dielectric parameters of porous Si are highly dependent on **Porosity, Structure, Morphology** \downarrow **Tunability of ε_r and tanδ**

==> <u>Need for accurate and reliable parameter extraction for</u> <u>the specific material used</u>

TARGET: To have a **reproducible** material with the **desired** and **well characterized** parameters which can be used in **RF simulation** tools resulting in good agreement between simulation and measurements

Dielectric Parameters of Porous Si

- \Box Tunable ε_r
 - range: 2-9 (c-Si: 11.7 @ 25 °C)
- Low loss tangent
 ~0.02-0.05
- Stable dielectric parameters over T
 T=20-170°C

Increased porosity > reduced dielectric constant

The experimental values of ε_r are in-between the values predicted by Vegard's and Bruggerman's models.

Sarafis, P., Hourdakis, E., & Nassiopoulou, A. G.. IEEE Trans. Electron Dev., 60(4), 1436-1443, (2013)

Porous Silicon Characterization Method

9

Dielectric Characterization

- 1. Fabrication of the PSi layer $(p^+, porosity 75\%, 200 \ \mu m \ thick)$
- 2. Integration of a Coplanar Waveguide (CPW) on it
- 3. S-parameters measurements (1-40 GHz)
- 4. Conformal Mapping Method
 - Quasi-TEM mode
 - Valid until 400 GHz

Sarafis, P., Hourdakis, E., & Nassiopoulou, A. G. IEEE Trans. Electron Dev., 60(4), 1436–1443, (2013)

Parameter Extraction

01

Sarafis, P., Hourdakis, E., & Nassiopoulou, A. G.. IEEE Trans. Electron Dev., 60(4), 1436–1443, (2013)

Panagiotis Sarafis, NCSR "Demokritos"/ IMEL, Greece

Reliability of the Extraction Method

- Ш
- 1. We have performed the extraction of the dielectric parameters on 6 different samples with 145 Ω CPW integrated on them
- 2. We have used the extracted values to simulate the same 6 devices using HFSS
- 3. We compare the simulations to the measurements

 $=> The maximum average deviation between measurement and simulation was: CPW Device <math>Zc [\Omega] = E_{11} [dB] = E_{12} [dB]$

- 1.2 dB for S_{11}
- 0.5 dB for S_{12}

CPW Device	Zc [Ω]	E ₁₁ [dB]	E ₁₂ [dB]
CPW1	145	1.2	0.4
CPW2	145	1.1	0.5
CPW3	145	1.0	0.3
CPW4	145	0.6	0.3
CPW5	145	0.5	0.3
CPW6	145	0.5	0.2

Measurement-Simulation Comparison I

12

- □ We extract the values of $ε_r$ and tanδ of a PSi layer
- We feed these values into HFSS to simulate the performance of 50, 100, 145Ω CPW Tlines
- We compare the simulations to the measurements of devices fabricated on PSi

Panagiotis Sarafis, NCSR "Demokritos"/ IMEL, Greece

Measurement-Simulation Comparison II

- \Box We extract the values of ε_r and tan δ of a PSi layer using a CPW
- □ We feed these values into HFSS to simulate the performance of inductors:
 - □ 2.5 turns 3.2 nH
 - \square 3.5 turns 6.1 nH
- □ We compare the simulations to the measurements of inductors fabricated on PSi having the used parameters

0

-10

-20

-30

5

Panagiotis Sarafis, NCSR "Demokritos"/ IMEL, Greece

ESSDERC 2013, Bucharest, 17.08.2013

10

Frequency (GHz)

2.5 Turns-Measured

3.5 Turns-Measured -. 3.5 Turns-Simulated

15

5 Turns-Simulated

20

In order demonstrate the **effectiveness** of porous Si as an RF substrate we compare it with different **state-of-the-art substrates**

Comparison of Different Substrates

Sarafis, P., Hourdakis, E., Nassiopoulou, A. G., Roda Neve, C., Ben Ali, K., & Raskin, J.-P. Solid-State Electron., 87, 27–33, (2013)

Panagiotis Sarafis, NCSR "Demokritos"/ IMEL, Greece

5

Conclusions

6

A **method to accurately extract** the dielectric parameters of porous Si has been developed. Its **validity** has been proven

Very good agreement between simulation and measurement for TLines and inductors has been obtained

A comparison between porous Si and other state-of-theart substrates for RF was made. The **superiority of porous Si** has been shown

The developed method for RF extraction opens the possibility of using commercial simulation programs to accurately design RF devices on porous Si

Thank you for your attention!

This work was supported by the EU Network of Excellence NANOFUNCTION through the EU 7th FP for Research under Contract 25375 visit: <u>http://www.nanofunction.eu/</u>

> Nano4nps @ NCSR "Demokritos" visit: <u>http://nano4nps.imel.demokritos.gr</u>

