An Experimental Study of Integrated DMOS Transistors with Increased Energy Capability

Timo Zawischka1, Martin Pfost1, Michael Ebli1, and Dragos Costachescu2

1Robert Bosch Center for Power Electronics
Reutlingen University, Germany

2Robert Bosch GmbH (AE/PJ-PSC1)
Reutlingen, Germany
Outline

Motivation

Proposed Optimization Approaches
 Basic Idea
 Requirements
 Approaches

Application to Test Structures
 Simulations
 Measurements

Application to a More Complex Structure

Conclusion
Motivation

→ **Size reduction limited by thermal constraints**, $R_{DS,\text{on}}$ better than actually required
→ **Trade-off between size and maximum device temperature**

Focus: Reduce maximum device temperature
Outline

Motivation

Proposed Optimization Approaches
 Basic Idea
 Requirements
 Approaches

Application to Test Structures
 Simulations
 Measurements

Application to a More Complex Structure

Conclusion
Temperature Distribution within a Power DMOS

Peak temperatures in the device center, outer areas cooler

Main question: How to reshape the temperature distribution?
Basic Idea

Idea: Temperature and power dissipation are closely related
→ **Selectively change the power dissipation density**

- Reduce in the hotter DMOS areas
- Increase in the cooler DMOS areas

→ **Separate DMOS regions with different characteristics** needed

Considering the temperature distribution (see above): Division of the DMOS into an **inner** and an **outer part**

Possible approach:

![Diagram showing inner and outer parts with active area dimensions](active_area_620mu_x_310mu.png)

inner part (470 µm × 155 µm)

active area (620 µm × 310 µm)
Motivation

Proposed Optimization Approaches
 Basic Idea
 Requirements
 Approaches

Application to Test Structures
 Simulations
 Measurements

Application to a More Complex Structure

Conclusion
Requirements

Absolute Requirements:

- **Only layout changes**, no technology modification, no changes of the fabrication process
- No effect on the **breakdown voltage**
- **Feasible for industrial designs**

Optional Requirements:

- No impact on the **on-state resistance**
- No changes of the **external circuitry**
Motivation

Proposed Optimization Approaches

Basic Idea
Requirements
Approaches

Application to Test Structures
Simulations
Measurements

Application to a More Complex Structure

Conclusion
Structure of the investigated DMOS

How to reduce the power dissipation density in this area?

→ Reduction of current density
1.) Reduced Source Contact Density

Source contacts in the hottest areas **selectively replaced by body contacts**

Less number of source contacts → less current flow
2.) Separated Gates

Division of the device into **two separately controllable gate regions**

Separation of the regions by a **highly resistive poly area**

Gate in the hot areas can be turned off if needed.
Outline

Motivation

Proposed Optimization Approaches
 Basic Idea
 Requirements
 Approaches

Application to Test Structures
 Simulations
 Measurements

Application to a More Complex Structure

Conclusion
Fabricated in a **state-of-the-art 0.18 µm BCD** technology

Measured **on-wafer**

Embedded **temperature sensors** for accurate measurement
Simulation – Reduced Src. Cnt. Density

Parameters:
\[t_{\text{pul}} = 1\text{ms}, \ V_{DS} = 20\text{V}, \ I_D = 1.67\text{A} \]

Reduced source contact density

- Reduced dissipated power in the center area
- Peak temperature reduced from \(350^\circ\text{C}\) to \(300^\circ\text{C}\) (corresponds to 20\% area reduction)
- Temperature distribution more uniform
Simulation – Inner Gate Turned Off

Parameters:
\(t_{\text{pul}} = 1\text{ms}, V_{\text{DS}} = 20\text{V}, I_D = 1.67\text{A} \)

Inner gate turned off

- **No power dissipation** in the center area
- **Peak temperature** reduced from 350°C to 300°C
- **Inner area cooler** compared to the reduced source density device
Outline

Motivation

Proposed Optimization Approaches
 Basic Idea
 Requirements
 Approaches

Application to Test Structures
 Simulations
 Measurements

Application to a More Complex Structure

Conclusion
Temperature measurement and simulation in comparison

→ Temperature reduction clearly visible

→ Good agreement of measurement and simulation
Energy Capability – Reduced Src. Cnt. Density

Time until device failure (measured at $V_{DS} = 20V..50V, I_D = 1.67A$)

![Graph showing energy capability over time](image)

- **Significant increase of energy capability** especially at moderate power pulses due to lower peak temperatures
Energy Capability – Inner Gate Turned Off

At low power pulses even better than the reduced source contact density device.

But: Worse than the reference device at high power pulses:

- Only outer area is turned on ➔ very high power density
- Much heat generated in a very short time
Electrical Parameters

On-state resistance $R_{DS,\text{on}}$

- **Reference** device (not optimized): $0.3 \ \Omega$
- **Reduced source contact density** device: $0.33 \ \Omega$
 $\Rightarrow R_{DS,\text{on}}$ only *slightly increased*
- **Separated gate** device
 - Inner gate turned off: $0.48 \ \Omega$
 \Rightarrow High $R_{DS,\text{on}}$, but *only in case of high power dissipation*
 - Inner gate turned on (if V_{DS} is low): $0.3 \ \Omega$
 \Rightarrow No $R_{DS,\text{on}}$ increase

Breakdown voltage not affected by any approach
Outline

Motivation

Proposed Optimization Approaches
 Basic Idea
 Requirements
 Approaches

Application to Test Structures
 Simulations
 Measurements

Application to a More Complex Structure

Conclusion
Inner gates turned off in the marked areas
Thermal behavior already better due to inactive center region
Further 7% peak temperature reduction (10% area reduction) by our approach
25% energy capability improvement by our approach
Outline

Motivation

Proposed Optimization Approaches
 Basic Idea
 Requirements
 Approaches

Application to Test Structures
 Simulations
 Measurements

Application to a More Complex Structure

Conclusion
Two easily applicable approaches to improve the energy capability of a LDMOS only by layout modification have been presented.

Both approaches allow a significant reduction of the peak device temperature or of the device area.

Acceptable $R_{DS,on}$ increase, no effect on breakdown voltage

Approaches easy to implement in existing technologies

Easy applicable to industrial designs

Ongoing work: More optimized structures, automated layout generation
Thank you very much for your attention.
Thank you very much for your attention.
We start with a (vertical) DMOS.

Disconnect one n⁺ region from the DMOS source

Only layout changes required for that

We obtain a bipolar NPN transistor (like the parasitic NPN)